
1

Instruction Scheduling

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Note by Baris Aktemur:
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412
at Rice.

Comp 412, Fall 2010 1

What Makes Code Run Fast?
•  Many operations have non-zero latencies
•  Modern machines can issue several operations per cycle
•  Execution time is order-dependent (and has been since the 60’s)

Operation Cycles
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

• Loads & stores may or may not block
on issue

>  Non-blocking ⇒ fill those issue slots
•  Branch costs vary with path taken
•  Branches typically have delay slots

>  Fill slots with unrelated operations
>  Percolates branch upward

•  Scheduler should hide the latencies

Assumed latencies for
example on next slide.

2

Comp 412, Fall 2010 2

Example
a ← a * 2 * b * c * d

Simple schedule Schedule loads early

Reordering operations for speed is called instruction scheduling

ALU	Characteris.cs		

This	data	is	surprisingly	hard	to	measure	accurately	
•  Value-dependent	behavior	
•  Context-dependent	behavior	
•  Compiler	behavior	

—  Have	seen	gcc	underallocate	&	
inflate	opera.on	costs	with		
memory	references	(spills)	
—  Have	seen	commercial	compiler	
generate	3	extra	ops	per	divide	
raising	effec.ve	cost	by	3		

•  Difficult	to	reconcile	measured	
reality	with	the	data	in	the		
Manuals	(e.g.	integer	divide	
on	Nehalem)	

Intel	E5530	opera/on	latencies		

Instruc/on	 Cost	
64	bit	integer	subtract	 1	

64	bit	integer	mul.ply	 3	

64	bit	integer	divide	 41	

Double	precision	add	 3	

Double	precision	subtract	 3	

Double	precision	mul.ply	 5	

Double	precision	divide	 22	

Single	precision	add	 3	

Single	precision	subtract	 3	

Single	precision	mul.ply		 4	

Single	precision	divide	 14	

Xeon	E5530	uses	the	Nehalem	
microarchitecture,	as	does	I7	

3 Comp 412, Fall 2010

3

Comp 412, Fall 2010 4

Instruction Scheduling (Engineer’s View)
The Problem

Given a code fragment for some target machine and the
latencies for each individual operation, reorder the operations
to minimize execution time

The Concept

Scheduler
slow

code

fast

code

Machine description

The Task

•  Produce correct code

•  Minimize wasted cycles

•  Avoid spilling registers

•  Operate efficiently

Comp 412, Fall 2010 5

Instruction Scheduling (The Abstract View)
To capture properties of the code, build a precedence graph G
•  Nodes n ∈ G are operations with type(n) and delay(n)
•  An edge e = (n1,n2) ∈ G if & only if n2 uses the result of n1

The Code

a

b c

d e

f g

h

i

The Precedence Graph

4

Comp 412, Fall 2010 6

Instruction Scheduling (Definitions)

A correct schedule S maps each n ∈ N into a non-negative integer
representing its cycle number, and

 1. S(n) ≥ 0, for all n ∈ N, obviously
2. If (n1,n2) ∈ E, S(n1) + delay(n1) ≤ S(n2)
3. For each type t, there are no more operations of type t in any cycle

than the target machine can issue

The length of a schedule S, denoted L(S), is
 L(S) = maxn ∈ N (S(n) + delay(n))

The goal is to find the shortest possible correct schedule.
S is time-optimal if L(S) ≤ L(S1), for all other schedules S1
A schedule might also be optimal in terms of registers, power, or

space….

Comp 412, Fall 2010 7

Instruction Scheduling (What’s so difficult?)
Critical Points
•  All operands must be available
•  Multiple operations can be ready
•  Moving operations can lengthen register lifetimes
•  Placing uses near definitions can shorten register lifetimes
•  Operands can have multiple predecessors
Together, these issues make scheduling hard (NP-Complete)

Local scheduling is the simple case
•  Restricted to straight-line code
•  Consistent and predictable latencies

5

Comp 412, Fall 2010 8

Instruction Scheduling: The Big Picture
1. Build a precedence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, 1 cycle at a time

a. Use a queue of operations that are ready
b. At each cycle

 I. Choose the highest priority ready operation & schedule it
II. Update the ready queue

Local list scheduling
•  The dominant algorithm for thirty years
•  A greedy, heuristic, local technique

*

Comp 412, Fall 2010 9

Local List Scheduling

Cycle ← 1
Ready ← leaves of P
Active ← Ø

while (Ready ∪ Active ≠ Ø)
 if (Ready ≠ Ø) then
 remove an op from Ready
 S(op) ← Cycle
 Active ¬ Active ∪ op

 Cycle ← Cycle + 1
 for each op ∈ Active
 if (S(op) + delay(op) ≤ Cycle) then
 remove op from Active
 for each successor s of op in P
 if (s is ready) then
 Ready ← Ready ∪ s

Removal in priority order

op has completed execution

If successor’s operands are
“ready”, add it to Ready

6

Comp 412, Fall 2010 10

Scheduling Example
1.  Build the precedence graph

The Code

a

b c

d e

f g

h

i

The Precedence Graph

Comp 412, Fall 2010 11

Scheduling Example
1.  Build the precedence graph
2.  Determine priorities: longest latency-weighted path

The Code The Precedence Graph

a

b c

d e

f g

h

i
3

5

8

7

9

10

12

10

13

Operation Cycles
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

7

Comp 412, Fall 2010 12

Scheduling Example
1.  Build the precedence graph
2.  Determine priorities: longest latency-weighted path
3.  Perform list scheduling

Used a new register name

l o ad A I r 0, @w ⇒ r 1 1) a:

a d d r 1, r 1 ⇒ r 1 4) b:

l o ad A I r 0, @ x ⇒ r 2 2) c:

m ul t r 1, r 2 ⇒ r 1 5) d:

l o ad A I r 0, @ y ⇒ r 3 3) e:

m ul t r 1, r 3 ⇒ r 1 7) f:
l o ad A I r 0, @z ⇒ r 2 6) g:

m ul t r 1, r 2 ⇒ r 1 9) h:
11) i: s t o r e A I r 1 ⇒ r 0, @w

The Code The Precedence Graph

a

b c

d e

f g

h

i
3

5

8

7

9

10

12

10

13

Comp 412, Fall 2010 13

More List Scheduling
List scheduling breaks down into two distinct classes

Variations on list scheduling
•  Prioritize critical path(s)
•  Schedule last use as soon as possible
•  Depth first in precedence graph (minimize registers)
•  Breadth first in precedence graph (minimize interlocks)
•  Prefer operation with most successors

Forward list scheduling
•  Start with available operations

•  Work forward in time

•  Ready ⇒ all operands available

Backward list scheduling
•  Start with no successors

•  Work backward in time

•  Ready ⇒ latency covers uses

8

Comp 412, Fall 2010 14

Local Scheduling
Forward and backward can produce different results

Block from SPEC
benchmark “go”

Operation load loadI add addI store cmp
Latency 1 1 2 1 4 1

cbr

cmp store1 store2 store3 store4 store5

add1 add2 add3 add4 addI

loadI1 lshift loadI2 loadI3 loadI4

1

2 5 5 5 5 5

7 7 7 7 6

8 8 8 8 8
Latency to

the cbr

Subscript
to identify

Comp 412, Fall 2010 15

Local Scheduling

Int Int Mem

1 loadI1 lshift

2 loadI2 loadI3
3 loadI4 add1
4 add2 add3
5 add4 addI store1
6 cmp store2
7 store3
8 store4
9 store5
10
11
12
13 cbr

F
o
r
w
a
r
d

S
c
h
e
d
u
l
e

Int Int Mem

1 loadI4
2 addI lshift

3 add4 loadI3
4 add3 loadI2 store5
5 add2 loadI1 store4
6 add1 store3
7 store2
8 store1
9
10
11 cmp

12 cbr

B
a
c
k
w
a
r
d
S
c
h
e
d
u
l
e

Using “latency to root” as the priority function

9

One step beyond a block is an
Extended Basic Block (EBB)

•  EBB is a maximal set of blocks s.t.
—  Set has a single entry, Bi
—  Each block Bj other than Bi has
 exactly one predecessor

•  Example CFG has three EBBs

Comp 412, Fall 2010 16

Scheduling Larger Regions

a
b
c
d

ge
f

h
i

l

j
k

B1

B2

B4

B6

B5

B3

CFG ≅ Control Flow Graph

Comp 412, Fall 2010 17

Scheduling Larger Regions
One step beyond a block is an
Extended Basic Block (EBB)

•  EBB is a maximal set of blocks such that
—  Set has a single entry, Bi
—  Each block Bj other than Bi has
 exactly one predecessor

•  Example has three EBBs
—  Big EBB has two paths
—  {B1,B2,B4 } & {B1,B3 }

•  Many optimizations
 operate on EBBs
 (including scheduling)

a
b
c
d

ge
f

h
i

l

j
k

B1

B2

B4

B6

B5

B3

10

Comp 412, Fall 2010 18

Scheduling Larger Regions
Superlocal Scheduling
•  Schedule entire paths through EBBs
•  Example has four EBB paths

a
b
c
d

ge
f

h
i

l

j
k

B1

B2

B4

B6

B5

B3

